Saturday 18 November 2017

Gleitende Durchschnittliche Filterpython


Wir haben vorgestellt, wie man mit python Moving-Averages erstellt. Dieses Tutorial wird eine Fortsetzung dieses Themas sein. Ein gleitender Durchschnitt im Rahmen der Statistik, auch rollingrunning average genannt, ist eine Art von endlicher Impulsantwort. In unserem vorangegangenen Tutorial haben wir die Werte der Arrays x und y: Let8217s plot x gegen den gleitenden Durchschnitt von y aufgetragen, den wir yMA nennen wollen: Erstens haben let8217s die Länge beider Arrays gleich: Und dies im Kontext: Das Ergebnis Diagramm: Um dies zu verstehen, let8217s plotten zwei verschiedene Beziehungen: x vs y und x vs MAy: Der gleitende Durchschnitt hier ist die grüne Handlung, die bei 3 beginnt: Share this: Gefällt mir: Post navigation Lassen Sie eine Antwort Antworten abbrechen Sehr nützlich I Möchte den letzten Teil auf großen Datensätzen zu lesen hoffen, es wird bald kommen8230 d Blogger wie folgt: Hmmm, es scheint, diese quoteasy zu implementieren Funktion ist eigentlich ziemlich einfach, falsch zu bekommen und hat eine gute Diskussion über Speicher-Effizienz gefördert. I39m glücklich, aufblasen zu haben, wenn es bedeutet, dass etwas nach rechts gemacht worden ist. Ndash Richard NumPys Mangel an einer bestimmten Domain-spezifische Funktion ist vielleicht aufgrund der Core Teams Disziplin und Treue zu NumPys Prime-Direktive: bieten einen N-dimensionalen Array-Typ. Sowie Funktionen zum Erstellen und Indizieren dieser Arrays. Wie viele grundlegende Ziele, diese ist nicht klein, und NumPy macht es brillant. Das (viel) grßere SciPy enthält eine viel grßere Sammlung von domänenspezifischen Bibliotheken (sogenannte Unterpakete von SciPy-Devs), beispielsweise numerische Optimierung (Optimierung), Signalverarbeitung (Signal) und Integralrechnung (integrieren). Meine Vermutung ist, dass die Funktion, die Sie nach ist in mindestens einem der SciPy-Unterpakete (scipy. signal vielleicht) aber ich würde zuerst in der Sammlung von SciPy Scikits suchen. Identifizieren die relevanten Scikit (s) und suchen die Funktion von Interesse dort. Scikits sind unabhängig voneinander entwickelte Pakete, die auf NumPySciPy basieren und auf eine spezielle technische Disziplin gerichtet sind (z. B. scikits-image, scikits-learn etc.) Einige davon waren (vor allem das geniale OpenOpt für numerische Optimierung) hoch angesehene, ausgereifte Projekte Bevor er sich unter der relativ neuen Scikits-Rubrik befindet. Auf der Homepage der Scikits sind über 30 solcher Scikits aufgelistet. Obwohl mindestens einige von ihnen nicht mehr unter aktiver Entwicklung sind. Nach diesem Rat würden Sie zu scikits-timeseries führen, aber das Paket ist nicht mehr unter aktiver Entwicklung In Wirklichkeit ist Pandas geworden, AFAIK, die de facto NumPy-basierte Zeitreihen-Bibliothek. Pandas hat mehrere Funktionen, die verwendet werden können, um einen gleitenden Durchschnitt zu berechnen, der einfachste ist wahrscheinlich rollingmean. Die Sie so verwenden: Nun, rufen Sie einfach die Funktion Rolling Mean Passing in der Serie Objekt und eine Fenstergröße. Die in meinem Beispiel unten ist 10 Tage. Ob es funktioniert hat - z. Verglichen Werte 10-15 in der ursprünglichen Serie gegenüber der neuen Serie geglättet mit rollenden Mittel Die Funktion Rolling Mean, zusammen mit etwa ein Dutzend oder so andere Funktion sind informell gruppiert in der Pandas-Dokumentation unter der Rubrik Moving-Fenster-Funktionen eine zweite, verwandte Gruppe von Funktionen In Pandas wird als exponentiell gewichtete Funktionen bezeichnet (zB ewma, die einen exponentiell verschobenen gewichteten Durchschnitt berechnet). Die Tatsache, dass diese zweite Gruppe nicht in den ersten (Moving-Window-Funktionen) enthalten ist, liegt vielleicht daran, dass die exponentiell gewichteten Transformationen nicht auf ein Fenster mit fester Länge angewiesen sind. Ich spiele wieder in Python und habe ein schönes Buch mit Beispielen gefunden. Eines der Beispiele ist die Auftragung einiger Daten. Ich habe eine. txt-Datei mit zwei Spalten und ich habe die Daten. Ich habe die Daten genau dargestellt, aber in der Übung heißt es: Ändern Sie Ihr Programm weiter, um den laufenden Mittelwert der Daten zu berechnen und zu zeichnen, der durch Folgendes definiert ist: wobei r5 in diesem Fall (und yk die zweite Spalte in der Datendatei ist) . Lassen Sie das Programm sowohl die Originaldaten als auch den laufenden Durchschnitt auf demselben Graphen dar. Bisher habe ich dies: So wie berechne ich die Summe In Mathematica seine einfache, da seine symbolische Manipulation (Sumi, zum Beispiel), sondern wie man Summe in python, die alle zehn Punkte in den Daten nimmt und es durchschnittlich berechnet und zu berechnen Bis zum Ende der Punkte schaute ich das Buch an, fand aber nichts, was das erklären würde: heltonbikers code hat den Trick: D Vielen Dank :) Es gibt ein Problem mit der akzeptierten Antwort. Ich denke, wir müssen gültig anstelle der gleichen hier - return numpy. convolve (Intervall, Fenster, gleiche). Als Beispiel versuchen Sie die MA dieses Datensatzes 1,5,7,2,6,7,8,2,2,7,8,3,7,3,7,3,15,6 - das Ergebnis Sollte 4.2.5.4,6.0,5.0,5.0,5.2,5.4,4.4,5.4,5.6,5.6,4,6,7.0,6.8 sein. Aber mit demselben gibt uns eine falsche Ausgabe von 2.6.3.0,4.2,5.4,6.0,5.0,5.0,5.2,5.4,4.4,5.4,5.6,5.6, 4.6.7.0,6.8,6.2,4.8 Rusty-Code, um dies auszuprobieren -: Versuchen Sie dies mit gültigen amp gleichen und sehen, ob die Mathematik sinnvoll ist. Ich habe versucht, dies aus, aber ich werde es untersuchen, es ist eine Weile seit I39ve codiert in Python. Ndash dingod Warum don39t Sie schnell ausprobieren dies mit dem rostigen Code (und die Beispiel-Datensatz (als einfache Liste), schrieb ich. Für einige faul Personen (wie ich auf den ersten) - seine Masken aus der Tatsache, dass gleitende Durchschnitt ist falsch. Wahrscheinlich sollten Sie erwägen, die Bearbeitung Ihrer ursprünglichen Antwort. Ich versuchte es nur gestern und doppelte Kontrolle rettete mir Gesicht aus schauen schlecht bei der Berichterstattung auf Cxo Ebene. Sie müssen nur tun, ist zu versuchen Ihre gleiche gleitende Durchschnitt einmal mit quotvalidquot und andere Zeit mit quotsamequot - und sobald Sie überzeugt sind, geben Sie mir einige Liebe (aka-up-vote) ndash ekta Okt 29 14 bei 7:16

No comments:

Post a Comment